Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166470, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625724

RESUMO

Traffic pollution has been linked to high levels of metals and organic contaminants in road-side soils, largely due to abrasion of tires, brake pads and the road surface. Although several studies have demonstrated correlations between different pollutants and various traffic variables, they mainly focused on roads with medium to high traffic density (>30,000 vehicles per day). In this study we have focused on investigating tire wear particles and road-related metals (zinc, copper, lead, chromium, nickel, and the metalloid arsenic) in the soils of low traffic roads in rural areas (650-14,250 vehicles per day). Different explanatory factors were investigated, such as traffic density, speed, % heavy vehicles, organic matter content, annual precipitation, soil types and roadside slope profiles. The results show high levels of tire wear particles, from 2000 to 26,400 mg/kg (0.2-2.6 % tire wear in d.w. soil), which is up to five times higher compared to previously reported values in roadside soils of high traffic density areas. A weak but significant correlation was found between tire wear particles, traffic speed and the annual precipitation. No significant relationship was found between tire wear particles metals. The concentrations of metals were comparable to previous studies of high traffic areas of Norway, as well as both urban and rural soils in other countries. For the metals, all factors together explained 45 % of the variation observed, with traffic density (11 %) and organic matter content (10 %) as the most important single variables. The analysis of tire wear particles in soils using Pyrolysis Gas chromatography Mass Spectrometry is challenging, and the results presented demonstrate the need for pretreatment to remove organic matter from the samples before analysis.

2.
Water Sci Technol ; 88(4): 874-884, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37651326

RESUMO

Treatment of tunnel wash runoff water and road runoff water before it reaches the environment is recommended to limit the negative consequences of traffic-related pollution. The efficiency of existing water treatment systems to remove traffic-related microplastic (MP) has not been sufficiently documented. Expanding the knowledge about traffic-related MP and documenting the treatment efficiency of MP in road tunnel wash water (TWW) and road runoff (RRW) treatment systems were the objectives of the presented project. TWW from the Tåsen tunnel, Norway, and RRW from the Fossbekken sedimentation pond were investigated in summer and winter situations. Six commonly available polymer types, tire rubber tread particles (TRP), and road marking paints (RMP) were analyzed in the selected samples. About 0.12 and 0.26 µg/L of polymers were identified in winter and summer TWWs. Significantly higher tire rubber and road marking paint concentrations were identified in the winter sample compared to summer sample. Suspended particle concentration in the Fossbekken RRW treatment pond effluent was lower in the summer than in the winter sample. About 0.002 and 0.0008 µg/L polymer masses were identified in winter and summer samples, respectively. TRP in the winter and summer samples were 0.7 and 0.2 µg7/L, and 13.4 µg/L RMP was found in the winter sample, while it was only 0.008 µg/L in the summer sample.


Assuntos
Poluição Relacionada com o Tráfego , Microplásticos , Plásticos , Borracha , Polímeros
3.
J Hazard Mater ; 435: 129032, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650740

RESUMO

Road pollution is one of the major sources of microplastic particles to the environment. The distribution of tire, polymer-modified bitumen (PMB) and tire and road wear particles (TRWP) in different tunnel compartments were explored: road surface, gully-pots and tunnel wash water. A new method for calculating TRWP using Monte Carlo simulation is presented. The highest concentrations on the surface were in the side bank (tire:13.4 ± 5.67;PMB:9.39 ± 3.96; TRWP:22.9 ± 8.19 mg/m2), comparable to previous studies, and at the tunnel outlet (tire:7.72 ± 11.2; PMB:5.40 ± 7.84; TRWP:11.2 ± 16.2 mg/m2). The concentrations in gully-pots were highest at the inlet (tire:24.7 ± 26.9; PMB:17.3 ± 48.8; TRWP:35.8 ± 38.9 mg/g) and comparable to values previously reported for sedimentation basins. Untreated wash water was comparable to road runoff (tire:38.3 ± 10.5; PMB:26.8 ± 7.33; TRWP:55.3 ± 15.2 mg/L). Sedimentation treatment retained 63% of tire and road wear particles, indicating a need to increase the removal efficiency to prevent these from entering the environment. A strong linear relationship (R2-adj=0.88, p < 0.0001) between total suspended solids (TSS) and tire and road wear rubber was established, suggesting a potential for using TSS as a proxy for estimating rubber loads for monitoring purposes. Future research should focus on a common approach to analysis and calculation of tire, PMB and TRWP and address the uncertainties related to these calculations.


Assuntos
Microplásticos , Material Particulado , Material Particulado/análise , Plásticos , Borracha , Água
4.
Sci Total Environ ; 824: 153785, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35182629

RESUMO

According to estimates put forward in multiple studies, tire and road wear particles are one of the largest sources to microplastic contamination in the environment. There are large uncertainties associated with local emissions and transport of tire and road wear particles into environmental compartments, highlighting an urgent need to provide more data on inventories and fluxes of these particles. To our knowledge, the present paper is the first published data on mass concentrations and snow mass load of tire and polymer-modified road wear particles in snow. Roadside snow and meltwater from three different types of roads (peri-urban, urban highway and urban) were analysed by Pyrolysis Gas Chromatography Mass Spectrometry. Tire particle mass concentrations in snow (76.0-14,500 mg/L meltwater), and snow mass loads (222-109,000 mg/m2) varied widely. The concentration ranges of polymer-modified particles were 14.8-9550 mg/L and 50.0-28,800 mg/m2 in snow and meltwater, respectively. Comparing the levels of tire and PMB particles to the total mass of particles, showed that tire and PMB-particles combined only contribute to 5.7% (meltwater) and 5.2% (mass load) of the total mass concentration of particles. The large variation between sites in the study was investigated using redundancy analysis of the possible explanatory variables. Contradictory to previous road studies, speed limit was found to be one of the most important variables explaining the variation in mass concentrations, and not Annual Average Daily Traffic. All identified variables explained 69% and 66%, for meltwater and mass load concentrations, respectively. The results show that roadside snow contain total suspended solids in concentrations far exceeding release limits of tunnel and road runoff, as well as tire particles in concentrations comparable to levels previously reported to cause toxicity effects in organisms. These findings strongly indicate that roadside snow should be treated before release into the environment.


Assuntos
Microplásticos , Plásticos , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Polímeros , Neve , Emissões de Veículos/análise
5.
J Hazard Mater ; 423(Pt A): 127092, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34488093

RESUMO

Tire and road wear particles may constitute the largest source of microplastic particles into the environment. Quantification of these particles are associated with large uncertainties which are in part due to inadequate analytical methods. New methodology is presented in this work to improve the analysis of tire and road wear particles using pyrolysis gas chromatography mass spectrometry. Pyrolysis gas chromatography mass spectrometry of styrene butadiene styrene, a component of polymer-modified bitumen used on road asphalt, produces pyrolysis products identical to those of styrene butadiene rubber and butadiene rubber, which are used in tires. The proposed method uses multiple marker compounds to measure the combined mass of these rubbers in samples and includes an improved step of calculating the amount of tire and road based on the measured rubber content and site-specific traffic data. The method provides good recoveries of 83-92% for a simple matrix (tire) and 88-104% for a complex matrix (road sediment). The validated method was applied to urban snow, road-side soil and gully-pot sediment samples. Concentrations of tire particles in these samples ranged from 0.1 to 17.7 mg/mL (snow) to 0.6-68.3 mg/g (soil/sediment). The concentration of polymer-modified bitumen ranged from 0.03 to 0.42 mg/mL (snow) to 1.3-18.1 mg/g (soil/sediment).


Assuntos
Plásticos , Polímeros , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos , Pirólise
6.
Sci Total Environ ; 738: 139352, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806381

RESUMO

Roads are estimated to be the largest source of microplastic particles in the environment, through release of particles from tires, road markings and polymer-modified bitumen. These are all released through the wear and tear of tires and the road surface. During the winter in cold climates, the road surface may freeze and cause icing on the roads. To improve traffic safety during winter, road salt is used for de-icing. Knowledge of microplastic (MP) contamination in road salt has, until now, been lacking. This is contrary to the increasing number of studies of microplastics in food-grade salt. The objective of this study was to investigate if road salt could be an additional source of microplastics to the environment. Fourier-Transform Infrared spectroscopy (FT-IR) and Pyrolysis gas chromatography mass spectrometry (GC-MS) were employed to identify and quantify the polymer content in four types of road salts, three sea salts and one rock salt. The particle number of MP in sea salts (range 4-240 MP/kg, mean ±â€¯s.d. = 35 ±â€¯60 MP/kg) and rock salt (range 4-192 MP/kg, 424 ±â€¯61 MP/kg, respectively) were similar, whereas, MP mass concentrations were higher in sea salts (range 0.1-7650 µg/kg, 442 ±â€¯1466 µg/kg) than in rock salts (1-1100 µg/kg, 322 ±â€¯481 µg/kg). Black rubber-like particles constituted 96% of the total concentration of microplastics and 86% of all particles in terms of number of particles/kg. Black rubber-like particles appeared to be attributable to wear of conveyer belts used in the salt production. Road salt contribution to MP on state and county roads in Norway was estimated to 0.15 t/year (0.003% of total road MP release), 0.07 t/year in Sweden (0.008%) and 0.03 t/year in Denmark (0.0004-0.0008%) Thus, microplastics in road salt are a negligible source of microplastics from roads compared to other sources.

7.
Sci Total Environ ; 409(8): 1430-43, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21295820

RESUMO

In recent decades there has been growing concern about highway runoff as a potential threat and a significant source of diffuse pollution to the aquatic environment. However, identifying ecotoxicological effects might be challenging, especially at sites where the traffic density is modest to low. Hence, there is a need for alternatives e.g. small-scale toxicity tests using conventional endpoints such as mortality and growth. The present paper presents result from a transcriptional (microarray) screening performed on liver from brown trout (Salmo trutta) acutely exposed (4h) to traffic-related contaminants during washing of a highway tunnel outside the city of Oslo, Norway. The results demonstrated that traffic-related contaminants caused a plethora of molecular changes that persisted several hours after the exposure (i.e. during recovery). Beside an evident transcriptional up-regulation of e.g. cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and cytosolic sulfotransferase (SULT) involved in xenobiotic biotransformation, the observed responses were predominantly associated with immunosuppression, oxidative damage, and endocrine modulation. The observed responses were likely caused by an interaction of several contaminants including trace metals and organic micro-pollutants such as PAHs.


Assuntos
Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Truta/genética , Emissões de Veículos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citosol/metabolismo , Água Doce/química , Perfilação da Expressão Gênica , Metais/análise , Metais/toxicidade , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sulfotransferases/genética , Sulfotransferases/metabolismo , Truta/metabolismo , Emissões de Veículos/análise , Poluentes Químicos da Água/análise
8.
J Environ Monit ; 7(10): 989-98, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16193171

RESUMO

Aluminium (Al) toxicity is usually associated with acid rain and acidified freshwater systems. The present work demonstrates that acute fish mortality (50%) also occurs in moderate acidified salmon rivers during sea salt episodes. Furthermore, catchment liming was proved to be an efficient measure to counteract the fish toxicity. The impact of sea salt episodes on river water qualities and on Atlantic Salmon (Salmo salar L.) was studied in two rivers situated at the west coast of Norway. During February-May 2002, fish were kept in tanks and continually exposed to the changing water qualities. Changes in Al-species were followed using in situ fractionation techniques. During storm events and high sea salt deposition, the sea salt concentration increased (190 to 580 microM Cl), pH decreased (pH 5.3 to 4.6) and the concentration of low molecular mass (LMM) cationic Al-species (Al(i)) increased (0.7 to 3.0 microM) in the river. Subsequently, Al accumulated in fish gills (6 to 19 micromol g(-1) dw) causing ionoregulatory and respiratory failures as well as mortality. In water the concentration of LMM Al(i) stayed enhanced during four weeks, while the physiological stress responses in surviving fish remained high for a longer time (>eight weeks). To counteract Al toxicity, one of the tributary catchments had been limed four years earlier. Due to catchment liming (1000 kg ha(-1)) the water concentration of LMM Al(i)(<0.7 microM) and the Al accumulation in gills remained relatively low (<7 micromol g(-1) dw) during the storm and no fish mortality occurred.


Assuntos
Alumínio/intoxicação , Doenças dos Peixes/induzido quimicamente , Salmo salar , Água do Mar/química , Poluentes Químicos da Água/intoxicação , Alumínio/farmacocinética , Animais , Carbonato de Cálcio , Doenças dos Peixes/metabolismo , Brânquias/metabolismo , Concentração de Íons de Hidrogênio , Noruega , Rios , Salmo salar/crescimento & desenvolvimento , Salmo salar/metabolismo , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...